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Abstract

A statistical analysis of the workload performance of a production

quality FORTRAN code for five different Cray Y-MP hardware and system

software configurations is performed. The analysis was based on an

experimental procedure that was designed to minimize correlations between
the number of requested CPUs and the time of day the runs were initiated.

Observed autotasking overheads were significantly larger for the set of jobs

that requested the maximum number of CPUs. Speedups for UNICOS 6
releases show consistent wall clock speedups in the workload of around 2,

which is quite good. The observed speedups were very similar for the set of

jobs that requested 8 CPUs and the set that requested 4 CPUs.

The original NAS algorithm for determining charges to the user

discourages autotasking in the workload. A new charging algorithm to be

applied to jobs run in the NQS multitasking queues also discourages NAS

users from using autotasking. The new algorithm favors jobs requesting 8

CPUs over those that request less, although the jobs requesting 8 CPUs

experienced significantly higher overhead and presumably degraded system

throughput.

A charging algorithm is presented that has the following desirable

characteristics when applied to the data: higher overhead jobs requesting 8

CPUs are penalized when compared to moderate overhead jobs requesting 4

CPUs, thereby providing a charging incentive to NAS users to use

autotasking in a manner that provides them with significantly improved

turnaround while also maintaining system throughput.

1The author is employed in the NAS Systems Division at NASA Ames Research Center.

2This work was supported by NASA Contract No. NAS2-12961 while the author was an

employee of Computer Sciences Corporation under contract to the Numerical Aerodynamic
Simulation Systems Division at NASA Ames Research Center.



1. Introduction

There is a great deal of interest in improving the throughput of

Computational Fluid Dynamics (CFD) codes on multi-processor vector

supercomputers by allowing the code to take advantage of more than one

processor at a time. Traditional shared memory multiprocessor

supercomputers such as those produced by Cray Research and Convex,

support either manual (multi-tasking) or automatic (automatic

parallelization) generation of parallel FORTRAN. Cray Research (CRI)

automatic parallelization (hereinafter referred to as autotasking) also allows

for additional manual intervention. System administrators feel that such

codes may better utilize system main memory. In the absence of parallel

codes, some processors may be idled because all available memory is in use.

This report describes an experiment in which a sample NASA CFD code is

used to estimate the practical benefits obtained by users and system managers
due to running autotasked codes in the NAS workload.

1.1 Parallel Performance Data and Production Environments

There is a pressing need for performance data on parallel codes in

production environments in order to manage the system efficiently and to

advise users how best to run their application codes in a production

workload. Obtaining quantitative estimates of the performance of parallel

codes in production workloads presents substantial difficulties. Components

of the workload change constantly and nonlinearly over time, and the

operating system and hardware configurations may vary significantly. Thus

there is relatively little published data about the performance of parallel codes

in real production environments. Lack of data has led to simplified, indirect

approaches to assessing the workload performance of particular codes. Two of

the most common methods of making such assessments are through the use

of dedicated time studies and by observing the performance of carefully
constructed synthetic workloads.

Studies of the suitability of particular codes for effective parallelization

initially focus on the performance of the parallel version relative to the

unitasked version in a dedicated environment [1,2,3,4,5]. Performance may be

substantially lower in the production workload than in a dedicated

environment. This is reasonable, as measurements of execution times in

such a workload may vary widely due to factors unrelated to the particulars of

the code, such as system scheduling parameters, and system load. However,

neglecting these factors limits the capability of such studies to predict

workload performance of parallelized production codes.

A more direct approach measures the performance of parallel codes in

synthetic workload environments [6,7,8,9,10,11]. These experiments typically

consist of a suite of codes in which particular parallel applications compete for

processor (CPU) time under actual scheduling constraints. The experiments

are run in dedicated time, with the usual goal of observing overall synthetic
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workload throughput. The operating system environments may be tuned to

obtain some range of results as an estimate of the systematic error present in

trying to model a variety of (or even one) real-life workloads. While this

approach is superior to using dedicated time single code results, it remains an

approximation to what occurs in a heavily loaded production environment.

Finally, measurements of parallel code performance have been made

in production workload environments [12]. There is little detailed analysis of

the connection between system parameters and observed elapsed times,

however. These measurements also lack statistical precision. At most, three

to four runs of a particular code are used to estimate its performance in the

workload. These experiments use the NAS Kernels program, rather than a

production code. While a kernel may simulate the workload as a whole, the

typical NAS supercomputer user will be running a production CFD code

rather than simple kernels. In the following, a reference to a workload always

implies the NAS production workload unless explicitly stated otherwise.

The existing data constitute a number of very interesting pieces to a

jigsaw puzzle. The simulated workloads provide a controlled environment
in which to assess the importance of various parameters and conditions. The

production results provide a glimpse of actual code performance in
workloads. Nevertheless, essential information is not yet available. There is

no information on the sensitivity of job turnaround time to system

parameters and system load. The existing production workload data is based
on a small number of runs of each job. Given the large fluctuations in

execution times, it is difficult to estimate the benefit which a user may

actually expect to see by parallelizing a code. By the same token, it is difficult

for a system administrator to set charging policies which reward multitasking

or autotasking in accordance with the need for high overall throughput.

1.2 NAS User Community

The NAS user community consists of over 1100 researchers at more

than 150 sites across the nation. NAS users in 1990 consumed over 114,000

Cray hours while working on more than 400 scientific projects. Most users

are working on the types of aeroscience problems that NAS was created to

address. These problems include direct solutions of the Navier-Stokes or

Euler equations. Others are pursuing applications which range from

modeling the structure and properties of superconducting compounds, to

studying the fluid flow inside an artificial heart, or investigating the structure
of the AIDS virus. These users are typically conventional FORTRAN

programmers, using single processor versions of vectorized codes.

1.3 Cray Research Inc. Y-MP System

The Cray Y-MP is an eight CPU, multiple instruction multiple data

stream (MIMD) computer system. The clock period (CP) at the inception of

the project was 6.33 nanoseconds. Shortly after the inception of this project

the clock speed was reduced to 6.0 nanoseconds, and the main memory was
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increased from 32 Megawords (MW) to 128 (MW). The relatively fast shared

main memory is augmented by a slower 256 MW solid-state storage device
(SSD).

The operating system (UNICOS) is UNIX System V based, and

underwent over five significant upgrades over the course of this study.

Support exists for multiprogramming, where different processors run

different jobs, and multitasking. Multitasking allows multiple processors to

execute two or more parts of a single program in parallel [1]. The effects of

multitasking may be obtained by invoking the autotasking options of the
FORTRAN compiler. FORTRAN codes are by default run with full

vectorization on a single processor, or unitasked. A job is a single program

that may or may not spawn multiple processes. Jobs may be run in batch or

dedicated mode. Batch mode jobs run in a multi-programming

environment concurrently with other batch jobs and interactive users.

Scheduling of batch jobs is handled by the Network Queuing System (NQS)
[13].

Dedicated mode jobs run interactively with minimum competitive

system and user activity. The performance of a code running in a

multiprogramming, multiprocessing environment strongly depends on the

availability of system resources such as processors, disks, or memory.

Programs run in dedicated mode have minimal competition for resources

and hence obtain the best performance possible on the Cray Y-MP. This

performance is also much more reproducible than that measured in the

workload environment. Jobs run in batch mode on the Y-MP under normal

system workloads compete for resources with other jobs and are subject to
being swapped to disk. This adversely affects average wall clock execution

time performance compared to programs run in dedicated time.

1.4 Performance Evaluation Tools.

There are a number of tools which facilitate the parallelization of, and

evaluate the performance of, a FORTRAN program on the Y-MP. A short

description of the tools used in obtaining and analyzing the data is provided
below. Tools provided by Cray Research Inc. are described in more detail in
[15].

The Y-MP hardware performance monitor hpm summarizes the

machine performance of a program by reporting various hardware counter

statistics. Statistics are arranged by groups. Each group reports a set of related

statistics on aspects of the program's performance. Group 0 is an execution

summary which reports such statistics as instructions issued, I/O and CPU

references, and floating point additions, multiplications, and reciprocals.

Group 1 reports on various hold issue conditions. Group 2 summarizes

memory activity, while Group 3 reports vector events and an instruction

summary. Preparation involves normal compilation of the program source

which is then run with the hpm command on the command line in the same

4



manner as the UNIX time command, hpm works with multitasked

programs.

The ja command is a UNICOS utility that provides accounting

information on program runs. Useful statistics include elapsed time, user

CPU time, system CPU time, concurrent CPUs, and average concurrent CPUs.

The nasja command is a local utility that provides additional

accounting information. Charging incentives for billing multitasked jobs are

visible as negative billing charges for time accumulated on two or more

concurrent CPUs.

The schedv command is a UNICOS utility that sets and reports

memory scheduling parameters. These parameters include criteria for

determining whether or not a job is a CPU or memory hog, and thus subject

to swapping by the scheduler. They also include parameters which are used

in determining swap-in/out priorities of jobs in the workload.

The sar command is a UNICOS utility that provides comprehensive

information on operating system activity. Information such as portion of

time in user and system modes, portion of time in user, UNIX and idle for

each processor, buffer activity, system swapping and memory moves are

available for sampling time periods of user specified length and frequency.

The ldave command is a local utility that provides the number of

interactive users and one minute, five minute, and fifteen minute floating

averages of the overall system load. The system load is measured as the

number of processes, both interactive and batch, waiting in the run queue.

The mu command provides in-core, swapped, and total memory, in

Megawords. Ldave and mu are useful in obtaining a general measure of

overall system load but unfortunately are too coarse grained to provide

meaningful information for individual programs running in a normally

loaded system.

The UNICOS ps command provides information on the status of

running jobs, including status flags which indicate whether a job is swapped

or running.

1.5 NAS Operations

For system configuration purposes, the accounting week is divided into

prime time (0500--1800 Monday through Friday) and non-prime time (1800--

0500 Monday through Friday and all day weekends). Prime time is considered

to be the period when there is high interactive use of the system. System

parameters were, for some of the OS configurations studied here, varied

between prime and non-prime time in order to achieve better performance

for interactive and batch processes, respectively. The NAS production

environment over the period tested (October 30, 1989--December 19, 1991)

consisted of a mixed interactive and NQS batch workload.



The Y-MP production workload quantifiably changed over the course
of this experiment. Table 1 shows the mean values of several statistics

reported _y UNICOS during the execution time of the autotasked job used in

this experiment. The characteristics of this job are described below. The m u

and ldave data are consistent with a higher number of small memory

interactive jobs during prime time. The sar data shows significantly more

idle cycles during non-prime time. This in some (but not all) cases might be

attributable to small memory NQS queues draining [14], which suggests that

the throughput of the NAS Y-MP system was memory limited. This

situation has been cited [6, 10] as amenable to overall system throughput
improvement by including multitasked jobs in the workload, i.e.,

multitasked jobs are able to take advantage of CPU cycles that would

otherwise be wasted. The over-subscription of memory increased steadily

over the duration of this experiment (cf. Table 1), making autotasking more
alluring.

Table I

Measured

UNICOS

Version

5.0

5.1.10

6.O/6.0.5

6.0.12

6.1.4/6.1.5

Total MWords

(from mu)

Prime Off-Prime

37.2 + 0.2 33.2 + 0.5

109.8+2.4 110.2+ 1.2

123.1 + 4.6 115.2 ± 3.3

131.2 ± 4.4 117.6 ± 2.9

146.6 ± 2.1 135.2 ± 1.6

System Load Statistics

5 M_in. Load Avg. % Tot. Cycles Idle

(from ldave) (from sat)

Off-PrimePrime Off-Prime

_.5±0.7 15.3±0.4

_.3±0.6 14.5±0.3

19.5±1.0 14.7±0.6

21.0±1.3 14.4±0.5

25.1±0.9 16.0±0.3

Prime

0.20 + 0.08 4.3 + 0.8

1.06 + 0.35 13.03 +1.15

10.51+ 2.26 16.84+ 2.31

4.09 + 1.35 7.78 + 1.40

3.08 ± 0.49 11.85 + 1.08

1.6 Parallel Job Statistics

The UNICOS environment variable NCPUS occurs frequently in the

following, and denotes the number of concurrent processors requested by a

job at runtime. The most important of the statistics reported by UNICOS for

analyzing the runtime performance of a parallel code are the time statistics

produced by ja and hpm. Several interrelated time quantifies are reported for
each UNICOS job.

We define the following times in units of seconds. Connect time to i

concurrent processors Tc, i is the elapsed time i processors were concurrently

attached to the job (either executing or idle) and is obtained from the ja

summary report. Total connect time Tct (also denoted total CPU time) is the

the sum of the Tc_ and is obtained from the ja summary report. The variable

<nCPus> is the average number of concurrent processors as reported by ja:

_,iTc,i

<nCPUs>- Tct



The notation <ncPus> indicates the mean CPU time for all runs with NCPUS

requested CPUs. The summation runs over i, from 1 to NCPUS. In the

following, the bracket (<>) notation will be used for all arithmetic mean

values; sigma (o) will be used to represent the standard deviations.

Wait semaphore time Tws is the sum of all the individual CPU

execution times spent waiting for a semaphore (i.e., waiting at a

synchronization point). It is not directly relatable to execution time since

concurrent processors waiting for a semaphore are simultaneously

accumulating wait semaphore time. Wait semaphore time is obtained from

the hpm group 1 output.

User CPU time Tusr is the difference between total connect time Tct and

the wait semaphore time Tws.

Tusr =Tct - Tws

System CPU time Tsys is essentially UNIX system kernel work
attributable to a job. System CPU time is obtained from the ja command and

summary reports. Since the kernel is shared by all processes some work is not

attributable to a unique process and relevant charges are distributed among all

active processes. Similarly, some system work attributable to a job is not

charged to the system CPU time.

The total CPU time TCPU is defined to be:

TCPU = Tct + Tsys

This time (which includes the wait semaphore time) is used in calculating the

autotasking overhead.

The turnaround time for a job is the elapsed time from the initial

submittal of the NQS job to the completion of the job, and includes wallclock

time as a component. Wallclock time is the elapsed time from the beginning

of execution of the job to its completion.

Two statistics are used to evaluate the wallclock time of a job in the

workload. The principal measure is the elapsed time reported by ja. This

time, which is reported after the job has completed, is denoted Twc,1. We also

use the wallclock time printed out by the FORTRAN STOP command. This

latter statistic, which we label Twc,2, was available for all datasets except

UNICOS 5.0.

The autotasking overhead OA,n, where n is equal to NCPUS, is derived

from the total CPU time, and is defined as:

<TcPU>n-<TcPU>I

OA,n = <TcPU> 1

The notation <TcPU>n indicates the mean CPU time for all runs with n

requested CPUs.



2 Design of this experiment

The measurement described in this report is an attempt to remedy

some of the deficiencies present in previous results. A sample production

code has been run in the workload over an extended period of time. The data

collected gives results which have good statistical precision, and are not

biased by the job mix present in the workload on any particular day or week.

The UNICOS shell scripts which control the experiment have been

instrumented with calls to the system performance evaluation tools described

above. This instrumentation plays a critical role in assessing the impact of

constantly changing scheduling parameters and system load on the code's
performance.

The experiment has been run under a variety of system hardware and

software configurations, giving the ability to assess each operating system and
hardware improvement as it pertains to the performance of autotasked codes.

Using the instrumentation referred to above, the importance of these

upgrades may be compared to effects due to the system load and
configuration.

2.1 Autotasked Code Description

The code chosen was SPARK, which is an implementation of a

numerical model for supersonic reacting mixing layers as detailed in [16].

SPARK has been applied to problems associated with the propulsion systems

of the National Aerospace Plane. The code used for this study solves the two-

dimensional Navier-Stokes equations coupled to a two-species chemical
reaction problem. The program was designed to consider the

multicomponent diffusion and convection of important species in the

chemical reactions, and the interactions between fluid mechanics, chemistry
and thermodynamics. Specifically, the kinetics of the chemical reaction are

incorporated into the simulation and in fact their computation constitutes

the bulk of the computational expense.

The governing equations are discretized using a temporally implicit
scheme which is solved by a modified MacCormack technique [16]. The

FORTRAN source comprises approximately 5000 lines of code. Under

UNICOS 5.0 the executable size of the unitasked job was 6.6 MW and the

executable size of the autotasked job was 6.8 MW. Under UNICOS 5.0.12 the

executable size of the unitasked job was 6.6 MW and the executable size of the

autotasked job was 7.5 MW. Normal unitasked execution requires

approximately 300 CPU seconds. Since the algorithm is time-stepping in
nature, for the purposes of this study a shorter execution time of

approximately 75 CPU seconds was chosen to allow reasonable turnaround

time with the available NQS queues.

A complete description of the dedicated time performance of the code

is given in [4]. The code was run in the NAS production environment with

fpp options to enable inner loop autotasking and level 6 subroutine inlining
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(cf77 -Zp -Wd,-ei6). Running with these options under UNICOS 5.0 with 32
MW of main memory and NCPUS set to 8, the code obtained 832.7 MFLOPS

with a speedup of 5.0 in dedicated time. Using the same options under
UNICOS 6.1.4, the code obtained 800.1 MFLOPS with a speedup of 4.1 (NCPUS

set to 8) and 570.7 MFLOPS with a speedup of 2.9 (NCPUS set to 4) in dedicated

time. These options were used for the data presented in this report. A more

detailed history of the performance of the code over the UNICOS versions

examined in this report is presented in [17].

2.2 Caveats

A number of compromises were made in order to obtain a realistic,

consistent, and cost-effective measurement of the variation of wall clock

turnaround time. The choice of a production code over a set of kernels or a

synthetic benchmark represents the practice of a typical user. The drawback of

this approach is that users' codes differ, and the behavior of SPARK may not

be easily extrapolated to other codes.

The cost of the experiment was a consideration as well, and was

designed to be minimized. The clxosen code is regarded to be a typical

example of a reasonably high performance NAS CFD code suitable for

autotasking. There was significant doubt that increasing the experimental
cost two or more fold (as would be required if a small number of additional

codes were studied in the experiment) would generate a correspondingly

significant improvement in experimental findings. The decision was made
to restrict the number of codes studied to one, and the findings we present

below must be viewed with this consideration in mind.

In order to have a constant measure of wallclock time in the NAS

system, the memory requirements and execution time of SPARK were not

changed. On the other hand, both the hardware and system software of the
NAS Y-MP underwent significant upgrades. This means that, while initially

SPARK required 1/4 of the Y-MP main memory, it required only about 1/16

of the 128 MW main memory after the upgrade. The NAS Y-MP has recently

been upgraded to 256 MW; what was once proportionally a large memory job

is now proportionally quite small. This is especially important to bear in

mind when evaluating the effects of system parameters.

Finally, the job mix has changed as system management policies have

changed. The NQS queue structure has undergone a number of changes.

The load varies significantly during the operational year due to user demands

stemming from conference deadlines, etc. These observations serve to

underscore the point that the only parameter that can be considered to be

constant over a series of hardware and software upgrades in the production

system is the source code of the application software probe used in this

investigation.
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2.3 Methodology

The experiment was performed by running a group of shell scripts

using the UNICOS cron facility. The startup script executed once every four

hours, with the first run of the day occurring at 2 a.m. The startup script

submitted a batch script to the NQS utility after waiting a random amount of

time which varied uniformly between zero and four hours. After waiting in

the NQS queue, the batch script ran the SPARK probe. The batch script was
instrumented with calls to the system performance utilities described in

Section 1.4 above. For the UNICOS 6.1 data only, the batch script spawned a
background process which called ps periodically while SPARK executed.

Autotasked versions of SPARK were run with NCPUS equal to 1, 4,

and 8, where NCPUS is a UNICOS environment variable specifying the

number of CPUs requested by the job. The batch script randomly selects the

value of NCPUS to be used for any given run. The UNICOS 6.1 dataset is an

exception as part of the data was taken with NCPUS randomly chosen to be 4
or 8 only. For the UNICOS 5.0 and 6.1 datasets, a unitasked version of SPARK

was run for comparison with the 1 CPU autotasked version. In this paper, we

will refer to data taken with NCPUS set to n as "n CPU data," where n is 1, 4,
or 8.

During periods of high system load, it was possible for the batch script

to be in the NQS queue for more than four hours. When this occurred, the

next batch job was not submitted. This resulted in a smaller statistical sample
for the prime time runs than for the off-prime time runs.

The outputs of each run of the batch script were collected into a single

"raw data" file. This file was then post-processed by an awk script in order to

produce a "crunched" file containing one line of summary information for

each run. The crunched file was imported into a Microsoft Excel spreadsheet

on a Macintosh for detailed data analysis. Results obtained using Excel were
independently checked with a data analysis program written in C on a
workstation.

3 Results

3.1 Wall clock times for the tested UNICOS Configurations

The wall clock tSme results are shown in Tables 2 and 3. These results

are obtained using Twc,1 and Twc,2, respectively. The error on the mean

represents the standard deviation of the mean of the distribution. The error

bars on Figs. 7 and 8 similarly represent the error on the mean of that

quantity. Figures 1 through 5 show that none of the distributions measured

in this experiment appear to be normal (Gaussian) distributions. This fact

means that no conclusions regarding the probability of a particular mean

being correct may be drawn, particularly such conclusions as rely on the
assumption that a distribution is normal.

10



Time

Period

Prime

Table 2: Wallclock Time Summary (Twc,1)

UNICOS No. of Elapsed Time (sec.)

Version CPUs Mean + error Median Std. Dev.

5.0 1 143.0 + 9.0 135.8 42.1
4 131.8 + 18.4 102.1 77.9

8 179.1 + 20.4 154.0 88.7

Number

22

Off-Prime 5.0 1 130.3 + 7.6 123.2 33.8
4 161.2 + 16.8 146.9 78.8

8 162.8 + 17.4 146.7 93.9

18

19

2O

All 5.0 1 137.0 + 6.0 131.0 38.5
4 148.0 + 12.5 104.0 78.8

8 169.3 + 13.2 149.0 91.3

5.1.10 1 144 ± 6 143. 41.8
4 91.1±6.7 88.7 46.3

8 115+11 1 05 70.9

22

29

42

Prime

Off-Prime 5.1.10 1 123 ± 29 75.5 265

40
48

46

48

45

83

All

4 42.6+1.9 38.2 16.3

8 49.2+3.1 38.0 28.0

5.1.10 1 131+19
87.4 214

72

81

129

Prime 6.0/6.0.5

Off-Prime 6.0/6.0.5

4 62.0±3.6 51.9 39.6

8 72.8+5.1 58.9 57.3

1 228+49 173 164
4 71.8 + 16.5 47.1 49.6

8 56.1 + 7.8 40.7 29.1

1 85.1 ± 4.5 77.3 21.2

120

126

11
9

14

22

All 6.0/6.0.5

4 48.8 ± 5.0 39.8 21.4

8 35.0 ± 2.8 31.6 13.2

1 133 ± 20 79.9 116

18

23

33

Prime 6.0.1.2

Off-Prime 6.0.1.2

4 56.5 ± 6.6 43.9 34.3

8 43.0 ± 3.7 33.0 22.8

1 180 :1:40 146 121

4 107 + 42 53.3 110.

8 81.8 ± 18.7 49.0 69.8

1 92.4 + 4.2 89.0 22.0

27

37

9

7

14

28

All 6.0.1.2

4 45.4 ± 2.8 44.1 13.8

8 46.3 ± 7.4 31.5 35.7

1 114 ± 12 91.3 71.3

24

23

37

Prime 6.1.4/6.1.5

Off-Prime 6.1.4/6.1.5

4 59.2 ±10.2 45.8 56.8

8 59.7 ± 8.8 39.2 53.3

1 98.4 ± 7.2 87.9 28.7

4 73.5 ± 8.6 64.8 48.7
8 66.9 ±10.8 43.6 65.8

1 88.9 ± 5.4 78.5 31.3

31

37

16

32

37

34

All 6.1.4/6.1.5 1

4 50.6 ±5.5 38.1 45.0

8 50.7 ± 3.8 39.1 33.7

92.0 ± 4.3 80.8 30.6

67

77

50

4 58.0 + 4.8 41.4 47.2

8 56.0 + 4.4 40.4 46.9

99

114
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Table 3:

Time UNICCS
Period Version

Prime 5.1.10

Wallclock Time Summary (Twc,2)

No. of Elapsed Time (sec.)
CPUs Mean Median Std. Dev.

1 139 + 6 138. 41.8

4 84.8+6.7 82.7 46.2

8 110+11 105 70.9

Number

46

48

45
Off-Prime 5.1.10 1 118 ± 29 71.0 265

4 37.3+1.9 32.0 16.1
8 43.9+3.0 32.3 27.2

83

72

81
All 5.1.10

Prime 6.0/6.0.5

1 125±19 80.9 214

4 56.3±3.6 44.6 39.3

8 67.7+5.1 54.9 57.2

1 225±49 1 73 161

4 67.5 + 15.3 46.1 46.0

8 51.4 ± 7.0 38.6 26.1

129

120

126

11

9

14
Off-Prime 6.0/6.0.5

1 81.6 + 3.8 76.8 17.7 22
4 47.5 ± 5.0 38.6 21.3 18

8 33.8 ± 2.7 30.4 13.0 23
All 6.0/6.0.5

Prime 6.0.1.2

1 129 ± 19 79.6 114

4 54.2 + 6.2 40.3 32.2
8 40.4 ± 3.4 32.2 20.6

1 178 ± 40 146 120

4 91.4 + 39 52.4 104.

8 65.8 + 16.4 41,8 61.4

33

27
37

9

7

14
Off-Prime 6.0.1.2

1 90.6 ± 4.0 88.1 21.4 28

4 42.6 ± 2.4 43.1 11.9 24
8 43.6 ± 7.4 30.2 33.8 23

All 6.0.1.2

Prime 6.1.4/6.1.5

Off-Prime 6.1.4/6.1.5

1 112 ± 12 88.5 70.7

4 53.6 _+9.4 43.7 52.0

8 52.0 + 7.7 37.9 46.7

1 95.6 _+7.1 83.8 28.3

4 58.9 ± 4.8 53.4 27.1
8 49.6 + 8.4 38.7 38.6

1 86.1 ± 5.2 74.2 30.2

37

31

37

16

32

37

34
4 41.6 ± 3.8 33.5 31.0 67

8 41.3 -1-3.0 33.6 26.5 77
All 6.1.416.1.5

1 89.1 ± 4.2 77.9 29.7 50

4 47.2 ± 3.1 38.1 30.8 99

8 44.0 + 3.4 34.0 36.4 114
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Figures 1 to 5 show the distribution of wall clock times for each

UNICOS configuration, separated into prime and off-prime running periods.

A number of distributions (e.g., Fig. 4a) show large non-Gaussian tails at large

wall clock times. These runs will be referred to as outliers. A second example
of non-Gaussian behavior is the cut-off at low elapsed time for each

distribution. As the job cannot run faster than it does in a dedicated

environment, an asymmetry is introduced into the observed distribution.

The area of each distribution is normalized to unity; reading the arbitrary unit

off the vertical axis and multiplying it by the histogram bin width thus yields
the fraction of runs contained in that bin. The bin width is lOsec, in all
histograms below.

All data sets, except the 5.0 results, show a clear difference between the

distributions of prime and off-prime wallclock times, with smaller mean

times in the off-prime execution. There was no benefit to off-prime execution
in 5.0. An examination of Table 2 shows that an additional benefit of off-

prime execution is reduced fluctuations in the wallclock time as indicated by

o. This effect is most evident for both UNICOS 6.0 datasets. Values of o

obtained under UNICOS 5.0 are indistinguishable between the prime and off-

prime execution. This is due to the outliers mentioned above; the outliers

increase the skewness of the distribution, limiting the utility of o as a
measure of scatter.

The above results were checked by examining Twc,2 (cf. Table 3). A

comparison of Table 2 and Table 3 shows a significant discrepancy between

Twc,1 and Twc,2 in the UNICOS 6.1 data. A histogram of the difference ATwc =
Twc,1 - Twc,2 is shown in Figure 6. The 6.1 data, and to a much lesser extent

the 6.0.12 data, have a number of runs with large discrepancies between the

two times. For most of the 6.1 runs, data was available from a script which

executes ps on SPARK jobs while they are running. These data show that the

SPARK processes are swapped out during the time between the printing of

the FORTRAN Stop message and the printing of the ja Command Report.

The wallclock time discrepancy appears to be an artifact of autotasking.

The value of ZlTwc for UNICOS 6.1, 1 CPU runs does not differ significantly
from that of earlier datasets. Furthermore, the 4 CPU data under 6.1 has 5

runs where ZlTwc is above 40sec., as opposed to 8 runs above 40sec. for the 8

CPU data. We will quote results using Twc,1. As the system problem which is
keeping these processes swapped out may be solved in future releases of

UNICOS, the Twc,2 results may be viewed as predictions of improved
performance in that eventuality.
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Comparison of CPU Time Overheads

The autotasking overhead is shown in Table 4 and Fig. 7 below for all

260

datasets. In each case, the overhead increases significantly when NCPUS is

increased from 4 to 8. The improvements made in upgrading from UNICOS

version 5.1 to 6.0 reduced this penalty by factors of 4 to 2. These numbers

suggest that there is little benefit to system throughput when moderately

parallelizable codes, such as SPARK, are run with 8 requested CPUs. This
conclusion is corroborated by the failure of setting NCPUS to 8 to reduce

mean wallclock times in all but the 6.0/6.0.5 dataset. Even in that dataset, the

modest reduction in mean wallclock times would not result in a significant

improvement in system throughput.
It is also clear that the overhead in the UNICOS 6.0.12 and 6.1.4/6.1.5

datasets is indistinguishable from that of the UNICOS 5.0 data, and much

larger than that of UNICOS 6.0/6.0.5. This leads to the conclusion that there

are factors present in the system which have as much effect on the overhead

as did the major autotasking upgrade put in place with UNICOS 6. Effective

use of autotasking for improving system throughput will require the

identification of these factors.
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The data were examined to determine if the overhead increases

between the 4 and 8 CPU data were due to system CPU time, user CPU time,

or semaphore wait time. For the UNICOS 5 runs, the increase was largely due
to the system overhead, with a smaller (less than 20%) contribution from the

semaphore wait time and less than 5% from user CPU time. Under UNICOS

6, the increase was due to the user and system CPU times in approximately
equal proportions, with a negligible contribution (less than 2%) from the
semaphore wait time.

The overhead has also been calculated separately for prime and off-

prime running. Decreases in overhead of five to ten percent for off-prime
time with respect to prime time running were found in both UNICOS 5

datasets for multi-CPU runs. :Running under UNICOS 6, off-prime

overheads ranged from 7 percent lower to 2 percent higher for the multi-CPU

data. No significant variation was seen between UNICOS 6 or UNICOS 5

datasets with respect to running period. Single CPU runs showed no

differences between prime and off-prime overheads. The evidence then

suggests that the overhead did not vary dramatically with running period,
and that it decreased when UNICOS 6 was installed.

It has been suggested that in future releases of UNICOS the compiler
should implement full autotasking by default. The default value of NCPUS

(the number of CPUs requested) is set to eight. Given the higher overheads

(and resulting charges) with 8 CPUs, and the very similar performance of jobs

requesting 4 CPUs compared to jobs requesting 8 CPUs (as observed in Section

2O



3.1), it is questionable that either user or system throughput will be well

served by this configuration.

UNICOS Version

5.0

5.1.10

6.0/6.0.5

6.0.12

Table 4
CPU Time Overhead

No. of CPUs
1
4
8
1
4
8
1
4
8
1
4
8

6.1.4/6.1.5 1
4
8

Overhead

1
0.250 + .018
0.580 + .036

1
0.392 + .010
0.917 +_ .030

1
0.121 + .013
0.260 + .018

1
0.309 + .038
0.532 + .060

1.
O.2O5 + .021
0.526 + .042

3.3 Comparison of Average Number of Concurrent CPUs and

Observed Speedup

The ja utility reports the average number of concurrent CPUs <nCPUs >

which a job has used. This may naively be viewed as a measure of how

effectively a code is running in parallel. A code for which <ncPus> is 4 could

be considered "more parallel" than a code with <nCPUs > equal to 3. As this

simplification overlooks the effects of the CPU time overhead discussed
above, it is interesting to compare the observed speedup of the SPARK jobs

with their utilization of concurrent CPUs. Figure 8 shows this comparison as

a function of the OS version for the 4 CPU and 8 CPU jobs separately.

The data indicate that <nCPUs> is a very poor measure of the effective

parallelism of the code. With the exception of the UNICOS 6.0/6.0.5 data, no
correlation between <nCPUs > and the speedup is observed. Except for that

case, a correlation which is contrary to the naive expectation is seen, i.e.,

larger values of <nCPus> correlate to lower speedups.
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3.4 Autotasking with I CPU vs. a Unitasked Executable

A unitasked version of SPARK was run concurrently with the

autotasked executables under UNICOS 6.1. Table 5 shows <Twc,l> and

<TcPU > for the unitasked executable and the autotasked executable run with

NCPUS set to 1. No significant increase in either time is observed with the

autotasked code. There is no penalty to either user or system in running this

code autotasked with I CPU.

6.1.4/6.1.5

IUnitasked:

1 CPU

autotasked:

Table 5

Comparison with Unitasked Executable

<Twc, l>

92.3 + 6.3

92.0 + 4.3

(3_wc fl

36.5

30.6

<TcPU >

68.3 + 0.3

69.0 + 0.3

c_CP U

1.69

1.76

3.5 Scheduling Parameter Effects

The UNICOS scheduler provides a number of parameters for tuning

system performance. As noted above, "outlier" runs appeared under certain

OS configurations. A systematic study of the outliers was undertaken in
order to determine which, if any, of these parameters might be correlated

with these runs. Possible correlations with system load were investigated as

part of the same study.

The data for each UNICOS version experiment was examined in the

following way. Within an NCPUS=I, 4, or 8 dataset, an outlier was defined to

be any run whose wallclock time was greater than (<Twc> + awc). Each dataset

was then separated into outlier and "central" runs. All system load variables

were compared between these two classes; no strong correlations were found,

with the possible exception of the number of interactive logins. This number,

determined from Idave, averaged about twice as high for outliers as for

central runs. It was, however, subject to large fluctuations for both types of

runs, rendering firm conclusions difficult.

The scheduling parameters set by schedv were then examined for both

outlier and central runs. No dependence on any parameter was observed,

with the exception of the "hog" parameters. Hogs are processes with memory

or CPU time usage over certain values. The value of hog parameters

hog_max_mem, memhog, and CPUhog may be examined by using the

schedv utility. The values were not set permanently, and varied significantly
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among the UNICOS version datasets. For all running periods except UNICOS

5.0, the schedv bigproc parameter set a memory size (32MW or more on the

128 MW Y-MP) above which no process was swapped out, thus disabling the
hog swapping for such processes.

The outliers mainly consist of runs for which the hog_max_mere

parameter has a non-zero value (cf. Table 6). When this is the case, the

UNICOS scheduler will swap out CPU and/or memory hogs if it determines
that the overall throughput of the system will benefit.

These data indicate that autotasked jobs would see the best

performance if they were run in a queue for which the hog scheduling

parameters were ignored. Under the system as it was configured during these

measurements, this problem would not have occurred for autotasked jobs

requiring more than 16 MW of main memory due to the schedv bigproc
setting.

Table 6

Effects of Hog Schedulin_ Parameter
Event Class Number withUNICOS Version

5.0 Outlier

Central

5.1.10 Outlier

Central

6.1.1.4/6.1.1.5

Outlier

Central

Outlier

Central

Outlier

Central

ho_ option on
24

106

Number with

hog option off

0

0

27 2

181 165

11

29

8

17

15

46

2

56

2

78

13

110

3.6 Effect of Running in Different NQS Queues

With the exception of the UNICOS 6.1 data, all SPARK jobs were run

in the 10MW/20minute NQS queue (the "normal" queue). The UNICOS 6.1

runs were distributed between that queue and the 32MW/5minutes ("debug")
queue. The relevant data are presented below in Table 7. When the wallclock

times of runs from the two queues are plotted (cf. Fig. 9), the shapes of the

distributions differ in the low-time region (20-60sec.). This discrepancy may
be due to the differing nice values of the two queues, which are 12 and 20 for

the 32MW/5minutes and 10MW/20minute queues, respectively. (Recall that

a lower nice value results in higher CPU priority.) There are also more
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outliers in the normal queue than in the debug queue. The mean and

median wallclock times are in better agreement for the debug queue data,

reflecting the relative dearth of outliers.

Table 7: Com

< Twc,l > normal -

< Twc fl >debug

Normal: Chvc,1

Debu_: oz,c.1

_arison of debug and

NCPUS = I I

3+9

27

35

normal queue data,

NCPUS = 4 ]

I
28+7

53

12

UNICOS 6.1

NCPUS = 8

14+8

42

27

There are suggestive differences between the 4 CPU jobs and the 8 CPU

jobs when the data from each queue are compared. The standard deviation of
the wallclock time is smaller for the multi-CPU jobs in the debug queue,

especially for the 4 CPU jobs. The mean wallclock time <Twc,l> is (6 + 8)

seconds larger for 4 CPU jobs than for 8 CPU jobs in the normal queue, but is

(8 + 6) seconds smaller for the 4 CPU jobs in the debug queue. Given the

statistical errors, this is not strong evidence that the 4 CPU jobs take better

advantage of the debug queues than do the 8 CPU jobs. As an additional

check, the overhead for the 4 and 8 CPU jobs in each queue is shown in Table

8; we see no variation for the 8 CPU jobs, while the 4 CPU jobs' overhead

improves significantly by running in the debug queue. While this result is
not conclusive, it does show that the possibility of smaller values of NCPUS

taking better advantage of the smaller nice values of the debug queue cannot

be ignored.

Table 8:

NCPUS

4

8

Overhead for autotasked UNICOS

6.1 jobs

] Debug queue ] Normal queue
0.16 + .02 0.29 + .02

0.51 + .06 0.54 + .03
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3.7 Study of User Charges and Algorithms

For the period of time covered by these measurements, autotasking

and multi-tasking users of the NAS Y-MP were assessed a charge given by the

equation:

Ca = co *(TcPU - C* .F, (Tc,i * ci )) = co*TcPU - Z(Tc,i * qi )

All time variables used here and below (e.g. Tc,i) are defined in Section 1.6

above. The constants ci are given by Z k, where C is 0.1 and the sum runs

over k from I to (i-1). The constants co and qi are shown in Table 9. Users are

charged in units of SBUs (system billing units). This algorithm is structured

to provide the greatest benefit to codes for which <nCPUs> is large.

NAS Charge Rate

co q3

Value (SBU/s): .03167 .003167

Table 9

Constants ("old" formula, Ca)

I
q3 q4 q5 q6 q7 q8

.0095 .03167 ! .03167 .0475 .0665 .08867

Table 10 shows the mean and standard deviation of the CPU charges

which would have been obtained for our runs with various charging

algorithms. Using the equation for Ca above, a user running SPARK with
NCPUS set to 4 incurs a charge increased by between 10 and 25% above that

obtained with I CPU. A user running with 8 CPUs suffers larger penalties.

This occurs because the increase in CPU time overhead (cf. Fig. 7) is larger

than the multi-CPU charge reduction. This might discourage a user from

autotasking a code, despite the smaller wallclock time (cf. Fig. 8).

An improved charging algorithm is thus needed. Two desirable

features of such an algorithm would be a rebate (or at least the absence of a

penalty) for a user who runs an autotasked code which displays a speedup

with only moderate overhead, and a mechanism for penalizing codes with

higher overheads. In the present instance, the average charge of the 4 CPU

SPARK jobs would be less than that of the 1 CPU SPARK jobs, but the 8 CPU

jobs would cost the same as (or more than) the I CPU jobs. Note that while
this result conflicts with the earlier goal of rewarding users who use many

CPUs, it is more beneficial to the system.

One way to effect such an improvement is to modify the value of the

charge constants in such a way as to reduce or eliminate the CPU charge

penalty. Another approach is to adopt a new algorithm. Care must be taken

in designing such an algorithm. For example, using <ncPus> or any quantity

directly related to <ncPus> in a charging algorithm would not be suitable (cf.

Section 3.3).
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Coincident with the upgrade to 256 MW of main memory, separate

multitasking (mt) queues were established. The charge for these queues is:

C[3=c0 * ( 4Tct + Tsy s )

where co is given in Table 9. Thus, NAS charges a parallel job as if it uses 4
CPUs. Should a job use more than 4 CPUs, then the CPU time in excess of 4

times the connect time is free. Using less than 4 CPUs results in a larger

charge than for a unitasked code. In practice, a code would require <nCPUs>

larger than 4 to break even, due to autotasking CPU time overhead. Table 10

shows this charge for the SPARK data. The charge for jobs requesting 1 CPU

was calculated using Tusr rather than Tct. Since no dataset except UNICOS 5.0

obtained <ncPus> larger than 4, it is not surprising that no reductions below

the normal 1 CPU charge are seen. The 8 CPU jobs do fare slightly better than

the 4 CPU jobs. This algorithm succeeds in counter-balancing the 50%
overheads present in the 8 CPU data.

Recent data obtained shows that large memory jobs run in the mt

queues similarly can obtain relatively high values (up to seven) of <nCPUs>,

although the speedups observed were less than four [18]. Since fewer than

four of the seven CPUs are being used effectively, such jobs consume almost

twice as much CPU time as they would using a single CPU. In this case,

limiting the number of CPUs which are charged against the job to four

reduces but does not eliminate the additional charge resulting from the

longer CPU time. Moreover, system overhead for running the job has
increased substantially.

Table 10

CPU Charges (SBUs)
UNICOS

Version

5.0

5.1.10

6.0/6.0.5

No. of

CPUs

1

4

8

1

4

8

1

4

8

<Cot> oCa

2.31 0.02

2.31 0.28

2.67 0.62

2.23 0.03

2.50 0.25

3.34 0.74

2.22 0.02

2.45 0.14

2.68 0.22

<C_ aCl_

9.21 0.08

3.30 0.60

3.36 0.83

8.81 0.10

4.13 0.87

4.80 1.29

8.80 0.04

4.70 O.67

3.99 O.50

<C_> oc_

2.31 0.02

1.76 0.27

2.33 0.59

2.23 0.03

1.64 0.32

2.46 0.79

2.22 0.03

1.83 0.15

2.00 0.22
6.0.12

6.1.4/6.1.5

1

4

8

1

4

8

2.18 0.08

2.77 0.42

3.16 0.74

2.18 0.06

2.66 0.37

3.16 0.63

8.55 0.08

5.02 1.09

4.60 1.44

8.57 0.10

4.77 1.04

4.46 1.01

2.18 0.08

2.07 0.39

2.38 0.66

2.18 0.06

1.98 0.33

2.39 0.55
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As an example of what results may be obtained by modifying the
constants in the original charging scheme,we also tried an algorithm of the
form:

C 7= co*(TcPu - C* l (Tct,i * i))

This formula attempts to reward autotasking jobs with low overhead, rather

than those with high <nCPUs>. The constant C was tuned using the UNICOS

6.1 data to give the 4 CPU SPARK jobs a small rebate, while giving the 8 CPU

jobs a small penalty. The results, shown in Table 10, used a C equal to 0.35. A

comparison of Table 10 and Table 4 shows that the reduction in overhead for

the UNICOS 6.0/6.0.5 data is reflected in smaller values for C? In particular,

the 8 CPU runs cost less than the 1 CPU runs for that dataset. An additional

benefit of this algorithm is that the user may predict CPU charges more

reliably, which is reflected by the smaller values of oCy as compared to aC/_.

A compromise between the goals of rewarding high <nCPUs > and

penalizing high overhead might be achieved by using i2 rather than i in the

formula in the preceding paragraph. A similar analysis to that above shows

than a C of 0.10 yields reasonable charges for SPARK. Further study would be

required to understand the balance between the two goals should this type of

scheme be implemented on supercomputers with more processors such as

the 16 processor CRI Y-MP C-90.

4 Summary

Autotasking overhead over the course of this experiment did not

significantly change, except for UNICOS 5.1 where it was significantly worse.
UNICOS version 6.0 corrected the overhead and wall clock turnaround

problems of the previous versions, but subsequent UNICOS upgrades display

increasing overheads to the extent that the average autotasking overhead has

returned to the high level observed in UNICOS 5 releases. The observed

overheads were significantly larger for the set of jobs that requested 8 CPUs

than for the set of jobs that requested 4 CPUs, for all UNICOS versions.

On the other hand, with the upgrade to UNICOS 6.0, wall clock

turnarounds are excellent for the tested code, wtiich is a necessity in the NAS

environment. Speedups for UNICOS 6 releases show consistent wall clock

speedups in the workload of around 2, which is quite good. The observed

speedups were very similar for the set of jobs that requested 8 CPUs and the

set that requested 4 CPUs. Given the higher overheads incurred by jobs

which request 8 CPUs, the planned default compiler option of autotasking

turned on is ill-advised.

We observed a problem with jobs swapping out after the FORTRAN

STOP statement execution in UNICOS versions 6.0.12 and 6.1. Fixing this

problem could improve the observed speedups by up to 25%. In addition, the

particular job tested does not achieve its maximum speedup in the workload
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because the operating system is sensibly biased via the hog scheduling

parameters toward maximizing the CPU time of the largest memory jobs.
There is also weak evidence for an observable correlation between wall clock
speedup and the UNICOS nice value.

The original NAS algorithm for determining charges to the user

discourages autotasking in the workload. The new NAS algorithm to be

applied to jobs run in the NQS multitasking queues also discourages NAS

users from using autotasking on the basis of the charges they receive. This

algorithm also favors jobs requesting 8 CPUs over those that request less,

although the jobs requesting 8 CPUs experienced significantly higher

overhead and presumably degraded system throughput.

We present a charging algorithm that has the following desirable

characteristics when applied to the data: higher overhead jobs requesting 8

CPUs are penalized when compared to moderate overhead jobs requesting 4
CPUs, thereby providing a charging incentive to NAS users to use

autotasking in an manner that provides them with significantly improved

turnaround while also maintaining system throughput.

5 Suggestions for Improvements

An improvement to the methodology of this experiment (to improve
the accuracy of the conclusions) would be to use several codes, all with

significantly longer execution time and larger memory requirements. This

would enable more accurate observation of the effects of hog scheduling
parameters, and better imitate the NAS workload. Useful information needs

to be obtained on the effects of differing amounts of parallelism and I/O.

Sampling a larger number of requested CPUs, i.e., sampling NCPUS=1,2,4,6,8,

would enable a better understanding of the relationship of CPUs requested to

overhead and speedup. This would also provide further tests to determine
correct nice values for queues.
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